Skip to main content

Quaternion

Represents a Quaternion. Quaternions are 4D structs that represent rotations in 3D space. Quaternions are often used in 3D graphics to avoid the ambiguity that comes with Euler angles (e.g. gimbal lock).

Roblox represents the transformation of an object via CFrame values, which are matrices that hold positional and rotational information. Quaternions can be converted to and from CFrame values through the ToCFrame method and cframe constructor.

Types

Quaternion

interface Quaternion {
Xnumber
Ynumber
Znumber
Wnumber
}

Similar to Vector3s, Quaternions are immutable. You cannot manually set the individual properties of a Quaternion. Instead, a new Quaternion must first be constructed.

Properties

identity

This item is read only and cannot be modified. Read Only
Quaternion.identity: Quaternion

Identity Quaternion. Equal to Quaternion.new(0, 0, 0, 1).

Functions

new

Quaternion.new(
xnumber,
ynumber,
znumber,
wnumber
) → Quaternion

Constructs a Quaternion.

caution

The new constructor assumes the given arguments represent a proper Quaternion. This constructor should only be used if you really know what you're doing.

euler

Quaternion.euler(
xnumber,
ynumber,
znumber
) → Quaternion

Constructs a Quaternion from Euler angles (radians).

-- Quaternion rotated 45 degrees on the Y axis:
local quat = Quaternion.euler(0, math.rad(45), 0)

axisAngle

Quaternion.axisAngle(
axisVector3,
anglenumber
) → Quaternion

Constructs a Quaternion representing a rotation of angle radians around axis.

-- Quaternion rotated 45 degrees on the Y axis:
local quat = Quaternion.axisAngle(Vector3.yAxis, math.rad(45))

lookRotation

Quaternion.lookRotation(
forwardVector3,
upwardsVector3?
) → Quaternion

Constructs a Quaternion representing a rotation facing forward direction, where upwards represents the upwards direction (this defaults to Vector3.yAxis).

-- Create a quaternion facing the same direction as the camera:
local camCf = workspace.CurrentCamera.CFrame
local quat = Quaternion.lookRotation(camCf.LookVector, camCf.UpVector)

cframe

Quaternion.cframe(cframeCFrame) → Quaternion

Constructs a Quaternion from the rotation components of the given cframe.

This method ortho-normalizes the CFrame value, so there is no need to do this yourself before calling the function.

-- Create a Quaternion representing the rotational CFrame of a part:
local quat = Quaternion.cframe(somePart.CFrame)

__mul

Quaternion.__mul(
selfQuaternion,
otherQuaternion | Vector3
) → Quaternion | Vector3

Multiplication metamethod. A Quaternion can be multiplied with another Quaternion or a Vector3.

local quat = quatA * quatB
local vec = quatA * vecA

Dot

Quaternion:Dot(otherQuaternion) → number

Calculates the dot product between the two Quaternions.

local dot = quatA:Dot(quatB)

Slerp

Quaternion:Slerp(
otherQuaternion,
tnumber
) → Quaternion

Calculates a spherical interpolation between the two Quaternions. Parameter t represents the percentage between the two rotations, from a range of [0, 1].

Spherical interpolation is great for smoothing or animating between quaternions.

local midWay = quatA:Slerp(quatB, 0.5)

Angle

Quaternion:Angle(otherQuaternion) → number

Calculates the angle (radians) between the two Quaternions.

local angle = quatA:Angle(quatB)

RotateTowards

Quaternion:RotateTowards(
otherQuaternion,
maxRadiansDeltanumber
) → Quaternion

Constructs a new Quaternion that rotates from this Quaternion to the other quaternion, with a maximum rotation of maxRadiansDelta. Internally, this calls Slerp, but limits the movement to maxRadiansDelta.

-- Rotate from quatA to quatB, but only by 10 degrees:
local q = quatA:RotateTowards(quatB, math.rad(10))

ToCFrame

Quaternion:ToCFrame(positionVector3?) → CFrame

Constructs a CFrame value representing the Quaternion. An optional position Vector can be given to represent the position of the CFrame in 3D space. This defaults to Vector3.zero.

-- Construct a CFrame from the quaternion, where the position will be at the origin point:
local cf = quat:ToCFrame()

-- Construct a CFrame with a given position:
local cf = quat:ToCFrame(someVector3)

-- e.g., set a part's CFrame:
local part = workspace.Part
local quat = Quaternion.axisAngle(Vector3.yAxis, math.rad(45))
local cframe = quat:ToCFrame(part.Position) -- Construct CFrame with a positional component
part.CFrame = cframe

ToEulerAngles

Quaternion:ToEulerAngles() → Vector3

Calculates the Euler angles (radians) that represent the Quaternion.

local euler = quat:ToEulerAngles()
print(euler.X, euler.Y, euler.Z)

ToAxisAngle

Quaternion:ToAxisAngle() → (
number
)

Calculates the axis and angle representing the Quaternion.

local axis, angle = quat:ToAxisAngle()

Inverse

Quaternion:Inverse() → Quaternion

Returns the inverse of the Quaternion.

local quatInverse = quat:Inverse()

Conjugate

Quaternion:Conjugate() → Quaternion

Returns the conjugate of the Quaternion. This is equal to Quaternion.new(-X, -Y, -Z, W).

local quatConjugate = quat:Conjugate()

Normalize

Quaternion:Normalize() → Quaternion

Returns the normalized representation of the Quaternion.

local quatNormalized = quat:Normalize()

Magnitude

Quaternion:Magnitude() → number

Calculates the magnitude of the Quaternion.

local magnitude = quat:Magnitude()

SqrMagnitude

Quaternion:SqrMagnitude() → number

Calculates the square magnitude of the Quaternion.

local squareMagnitude = quat:Magnitude()
Show raw api
{
    "functions": [
        {
            "name": "new",
            "desc": "Constructs a Quaternion.\n\n:::caution\nThe `new` constructor assumes the given arguments represent a proper Quaternion. This\nconstructor should only be used if you really know what you're doing.",
            "params": [
                {
                    "name": "x",
                    "desc": "",
                    "lua_type": "number"
                },
                {
                    "name": "y",
                    "desc": "",
                    "lua_type": "number"
                },
                {
                    "name": "z",
                    "desc": "",
                    "lua_type": "number"
                },
                {
                    "name": "w",
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion\n"
                }
            ],
            "function_type": "static",
            "source": {
                "line": 60,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "euler",
            "desc": "Constructs a Quaternion from Euler angles (radians).\n\n```lua\n-- Quaternion rotated 45 degrees on the Y axis:\nlocal quat = Quaternion.euler(0, math.rad(45), 0)\n```",
            "params": [
                {
                    "name": "x",
                    "desc": "",
                    "lua_type": "number"
                },
                {
                    "name": "y",
                    "desc": "",
                    "lua_type": "number"
                },
                {
                    "name": "z",
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion\n"
                }
            ],
            "function_type": "static",
            "source": {
                "line": 81,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "axisAngle",
            "desc": "Constructs a Quaternion representing a rotation of `angle` radians around `axis`.\n\n```lua\n-- Quaternion rotated 45 degrees on the Y axis:\nlocal quat = Quaternion.axisAngle(Vector3.yAxis, math.rad(45))\n```",
            "params": [
                {
                    "name": "axis",
                    "desc": "",
                    "lua_type": "Vector3"
                },
                {
                    "name": "angle",
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion\n"
                }
            ],
            "function_type": "static",
            "source": {
                "line": 105,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "lookRotation",
            "desc": "Constructs a Quaternion representing a rotation facing `forward` direction, where\n`upwards` represents the upwards direction (this defaults to `Vector3.yAxis`).\n\n```lua\n-- Create a quaternion facing the same direction as the camera:\nlocal camCf = workspace.CurrentCamera.CFrame\nlocal quat = Quaternion.lookRotation(camCf.LookVector, camCf.UpVector)\n```",
            "params": [
                {
                    "name": "forward",
                    "desc": "",
                    "lua_type": "Vector3"
                },
                {
                    "name": "upwards",
                    "desc": "",
                    "lua_type": "Vector3?"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion\n"
                }
            ],
            "function_type": "static",
            "source": {
                "line": 122,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "cframe",
            "desc": "Constructs a Quaternion from the rotation components of the given `cframe`.\n\nThis method ortho-normalizes the CFrame value, so there is no need to do this yourself\nbefore calling the function.\n\n```lua\n-- Create a Quaternion representing the rotational CFrame of a part:\nlocal quat = Quaternion.cframe(somePart.CFrame)\n```",
            "params": [
                {
                    "name": "cframe",
                    "desc": "",
                    "lua_type": "CFrame"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion\n"
                }
            ],
            "function_type": "static",
            "source": {
                "line": 179,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Dot",
            "desc": "Calculates the dot product between the two Quaternions.\n\n```lua\nlocal dot = quatA:Dot(quatB)\n```",
            "params": [
                {
                    "name": "other",
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 226,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Slerp",
            "desc": "Calculates a spherical interpolation between the two Quaternions. Parameter `t` represents\nthe percentage between the two rotations, from a range of `[0, 1]`.\n\nSpherical interpolation is great for smoothing or animating between quaternions.\n\n```lua\nlocal midWay = quatA:Slerp(quatB, 0.5)\n```",
            "params": [
                {
                    "name": "other",
                    "desc": "",
                    "lua_type": "Quaternion"
                },
                {
                    "name": "t",
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 246,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Angle",
            "desc": "Calculates the angle (radians) between the two Quaternions.\n\n```lua\nlocal angle = quatA:Angle(quatB)\n```",
            "params": [
                {
                    "name": "other",
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 283,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "RotateTowards",
            "desc": "Constructs a new Quaternion that rotates from this Quaternion to the `other` quaternion, with a maximum\nrotation of `maxRadiansDelta`. Internally, this calls `Slerp`, but limits the movement to `maxRadiansDelta`.\n\n```lua\n-- Rotate from quatA to quatB, but only by 10 degrees:\nlocal q = quatA:RotateTowards(quatB, math.rad(10))\n```",
            "params": [
                {
                    "name": "other",
                    "desc": "",
                    "lua_type": "Quaternion"
                },
                {
                    "name": "maxRadiansDelta",
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 305,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "ToCFrame",
            "desc": "Constructs a CFrame value representing the Quaternion. An optional `position` Vector can be given to\nrepresent the position of the CFrame in 3D space. This defaults to `Vector3.zero`.\n\n```lua\n-- Construct a CFrame from the quaternion, where the position will be at the origin point:\nlocal cf = quat:ToCFrame()\n\n-- Construct a CFrame with a given position:\nlocal cf = quat:ToCFrame(someVector3)\n\n-- e.g., set a part's CFrame:\nlocal part = workspace.Part\nlocal quat = Quaternion.axisAngle(Vector3.yAxis, math.rad(45))\nlocal cframe = quat:ToCFrame(part.Position) -- Construct CFrame with a positional component\npart.CFrame = cframe\n```",
            "params": [
                {
                    "name": "position",
                    "desc": "",
                    "lua_type": "Vector3?"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "CFrame"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 340,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "ToEulerAngles",
            "desc": "Calculates the Euler angles (radians) that represent the Quaternion.\n\n```lua\nlocal euler = quat:ToEulerAngles()\nprint(euler.X, euler.Y, euler.Z)\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Vector3"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 358,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "ToAxisAngle",
            "desc": "Calculates the axis and angle representing the Quaternion.\n\n```lua\nlocal axis, angle = quat:ToAxisAngle()\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "(Vector3, number)"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 388,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Inverse",
            "desc": "Returns the inverse of the Quaternion.\n\n```lua\nlocal quatInverse = quat:Inverse()\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 414,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Conjugate",
            "desc": "Returns the conjugate of the Quaternion. This is equal to `Quaternion.new(-X, -Y, -Z, W)`.\n\n```lua\nlocal quatConjugate = quat:Conjugate()\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 431,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Normalize",
            "desc": "Returns the normalized representation of the Quaternion.\n\n```lua\nlocal quatNormalized = quat:Normalize()\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 446,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "Magnitude",
            "desc": "Calculates the magnitude of the Quaternion.\n\n```lua\nlocal magnitude = quat:Magnitude()\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 467,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "SqrMagnitude",
            "desc": "Calculates the square magnitude of the Quaternion.\n\n```lua\nlocal squareMagnitude = quat:Magnitude()\n```",
            "params": [],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "number"
                }
            ],
            "function_type": "method",
            "source": {
                "line": 482,
                "path": "modules/quaternion/init.luau"
            }
        },
        {
            "name": "__mul",
            "desc": "Multiplication metamethod. A Quaternion can be multiplied with another Quaternion or\na Vector3.\n\n```lua\nlocal quat = quatA * quatB\nlocal vec = quatA * vecA\n```",
            "params": [
                {
                    "name": "self",
                    "desc": "",
                    "lua_type": "Quaternion"
                },
                {
                    "name": "other",
                    "desc": "",
                    "lua_type": "Quaternion | Vector3"
                }
            ],
            "returns": [
                {
                    "desc": "",
                    "lua_type": "Quaternion | Vector3\n"
                }
            ],
            "function_type": "static",
            "source": {
                "line": 526,
                "path": "modules/quaternion/init.luau"
            }
        }
    ],
    "properties": [
        {
            "name": "identity",
            "desc": "Identity Quaternion. Equal to `Quaternion.new(0, 0, 0, 1)`.",
            "lua_type": "Quaternion",
            "readonly": true,
            "source": {
                "line": 559,
                "path": "modules/quaternion/init.luau"
            }
        }
    ],
    "types": [
        {
            "name": "Quaternion",
            "desc": "Similar to Vector3s, Quaternions are immutable. You cannot manually set the individual properties\nof a Quaternion. Instead, a new Quaternion must first be constructed.",
            "fields": [
                {
                    "name": "X",
                    "lua_type": "number",
                    "desc": ""
                },
                {
                    "name": "Y",
                    "lua_type": "number",
                    "desc": ""
                },
                {
                    "name": "Z",
                    "lua_type": "number",
                    "desc": ""
                },
                {
                    "name": "W",
                    "lua_type": "number",
                    "desc": ""
                }
            ],
            "source": {
                "line": 18,
                "path": "modules/quaternion/init.luau"
            }
        }
    ],
    "name": "Quaternion",
    "desc": "Represents a Quaternion. Quaternions are 4D structs that represent rotations\nin 3D space. Quaternions are often used in 3D graphics to avoid the ambiguity\nthat comes with Euler angles (e.g. gimbal lock).\n\nRoblox represents the transformation of an object via CFrame values, which are\nmatrices that hold positional and rotational information. Quaternions can be converted\nto and from CFrame values through the `ToCFrame` method and `cframe` constructor.",
    "source": {
        "line": 50,
        "path": "modules/quaternion/init.luau"
    }
}